Telegram Group & Telegram Channel
🖥 Задача: Анализ пользовательского поведения с аномалиями в SQL

## Условие задачи:

Дана таблица user_events со следующей структурой:


CREATE TABLE user_events (
user_id INT,
event_time TIMESTAMP,
event_type VARCHAR(50),
platform VARCHAR(50)
);


🎯 Каждая строка описывает событие пользователя:
- user_id — идентификатор пользователя,
- event_time — время события,
- event_type — тип события (`login`, purchase, logout, error и т.д.),
- platform — платформа (`iOS`, Android, `Web`).

Требуется:

1. Найти пользователей, которые:
- Выполнили покупку (`purchase`),
- Но не заходили в систему (`login`) в течение последних 7 дней перед покупкой.

2. Найти пользователей, у которых:
- Более 30% всех событий за последний месяц составляют события типа error.

3. Рассчитать для каждого пользователя:
- Среднее время между входом (`login`) и следующим выходом (`logout`).
- Если logout отсутствует после login — игнорировать такую сессию.

---

## Дополнительные условия:

- Считайте, что данные могут быть объемными: миллионы строк.
- Решение должно быть оптимизировано: избегайте подзапросов в подзапросах без индексов, старайтесь минимизировать количество проходов по данным.
- Можно использовать оконные функции (`WINDOW FUNCTIONS`) и временные таблицы (`CTE`) для упрощения запросов.
- Платформу можно игнорировать в расчетах.

---

## Что оценивается:

- Умение использовать оконные функции и агрегаты.
- Умение правильно интерпретировать условия задачи в SQL-операции.
- Оптимизация запросов под большие объемы данных.
- Чистота, читаемость и структурированность кода SQL-запросов.

---

Примечание:
Эта задача проверяет как технические навыки работы с SQL, так и внимательность к деталям формулировки задачи. Небрежная реализация может дать неверные результаты, особенно на больших данных.

🔥 Подсказки и намёки для решения задачи


## Задание 1: Найти пользователей с покупками без логина за последние 7 дней

**Намёк:**
- Используйте оконную функцию LAG() или MAX() с фильтрацией событий login.
- Для каждой покупки проверяйте, был ли login в пределах 7 дней до события purchase.
- Можно применить LEFT JOIN событий login к событиям purchase.

## Задание 2: Найти пользователей с долей ошибок > 30%

**Намёк:**
- Используйте оконные функции COUNT(*) и SUM(CASE WHEN event_type = 'error' THEN 1 ELSE 0 END).
- Постройте долю ошибок на основе всех событий пользователя за последние 30 дней (`WHERE event_time >= CURRENT_DATE - INTERVAL '30 days'`).

## Задание 3: Рассчитать среднее время между login и следующим logout

**Намёк:**
- Используйте оконную функцию LEAD() для поиска следующего события после login.
- Пара login -> logout должна иметь корректный порядок по времени.
- Отбрасывайте случаи, где следующего logout нет или это событие другого типа.

@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/sqlhub/1857
Create:
Last Update:

🖥 Задача: Анализ пользовательского поведения с аномалиями в SQL

## Условие задачи:

Дана таблица user_events со следующей структурой:


CREATE TABLE user_events (
user_id INT,
event_time TIMESTAMP,
event_type VARCHAR(50),
platform VARCHAR(50)
);


🎯 Каждая строка описывает событие пользователя:
- user_id — идентификатор пользователя,
- event_time — время события,
- event_type — тип события (`login`, purchase, logout, error и т.д.),
- platform — платформа (`iOS`, Android, `Web`).

Требуется:

1. Найти пользователей, которые:
- Выполнили покупку (`purchase`),
- Но не заходили в систему (`login`) в течение последних 7 дней перед покупкой.

2. Найти пользователей, у которых:
- Более 30% всех событий за последний месяц составляют события типа error.

3. Рассчитать для каждого пользователя:
- Среднее время между входом (`login`) и следующим выходом (`logout`).
- Если logout отсутствует после login — игнорировать такую сессию.

---

## Дополнительные условия:

- Считайте, что данные могут быть объемными: миллионы строк.
- Решение должно быть оптимизировано: избегайте подзапросов в подзапросах без индексов, старайтесь минимизировать количество проходов по данным.
- Можно использовать оконные функции (`WINDOW FUNCTIONS`) и временные таблицы (`CTE`) для упрощения запросов.
- Платформу можно игнорировать в расчетах.

---

## Что оценивается:

- Умение использовать оконные функции и агрегаты.
- Умение правильно интерпретировать условия задачи в SQL-операции.
- Оптимизация запросов под большие объемы данных.
- Чистота, читаемость и структурированность кода SQL-запросов.

---

Примечание:
Эта задача проверяет как технические навыки работы с SQL, так и внимательность к деталям формулировки задачи. Небрежная реализация может дать неверные результаты, особенно на больших данных.

🔥 Подсказки и намёки для решения задачи


## Задание 1: Найти пользователей с покупками без логина за последние 7 дней

**Намёк:**
- Используйте оконную функцию LAG() или MAX() с фильтрацией событий login.
- Для каждой покупки проверяйте, был ли login в пределах 7 дней до события purchase.
- Можно применить LEFT JOIN событий login к событиям purchase.

## Задание 2: Найти пользователей с долей ошибок > 30%

**Намёк:**
- Используйте оконные функции COUNT(*) и SUM(CASE WHEN event_type = 'error' THEN 1 ELSE 0 END).
- Постройте долю ошибок на основе всех событий пользователя за последние 30 дней (`WHERE event_time >= CURRENT_DATE - INTERVAL '30 days'`).

## Задание 3: Рассчитать среднее время между login и следующим logout

**Намёк:**
- Используйте оконную функцию LEAD() для поиска следующего события после login.
- Пара login -> logout должна иметь корректный порядок по времени.
- Отбрасывайте случаи, где следующего logout нет или это событие другого типа.

@sqlhub

BY Data Science. SQL hub


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/sqlhub/1857

View MORE
Open in Telegram


Data Science SQL hub Telegram | DID YOU KNOW?

Date: |

Telegram Gives Up On Crypto Blockchain Project

Durov said on his Telegram channel today that the two and a half year blockchain and crypto project has been put to sleep. Ironically, after leaving Russia because the government wanted his encryption keys to his social media firm, Durov’s cryptocurrency idea lost steam because of a U.S. court. “The technology we created allowed for an open, free, decentralized exchange of value and ideas. TON had the potential to revolutionize how people store and transfer funds and information,” he wrote on his channel. “Unfortunately, a U.S. court stopped TON from happening.”

NEWS: Telegram supports Facetime video calls NOW!

Secure video calling is in high demand. As an alternative to Zoom, many people are using end-to-end encrypted apps such as WhatsApp, FaceTime or Signal to speak to friends and family face-to-face since coronavirus lockdowns started to take place across the world. There’s another option—secure communications app Telegram just added video calling to its feature set, available on both iOS and Android. The new feature is also super secure—like Signal and WhatsApp and unlike Zoom (yet), video calls will be end-to-end encrypted.

Data Science SQL hub from sg


Telegram Data Science. SQL hub
FROM USA